翻訳と辞書 |
Kernel eigenvoice : ウィキペディア英語版 | Kernel eigenvoice
Speaker adaptation is an important technology to fine-tune either features or speech models for mis-match due to inter-speaker variation. In the last decade, eigenvoice (EV) speaker adaptation has been developed. It makes use of the prior knowledge of training speakers to provide a fast adaptation algorithm (in other words, only a small amount of adaptation data is needed). Inspired by the kernel eigenface idea in face recognition, kernel eigenvoice (KEV) is proposed.〔(Kernel Eigenvoice Thesis )〕 KEV is a non-linear generalization to EV. This incorporates Kernel principal component analysis, a non-linear version of Principal Component Analysis, to capture the higher order correlations in order to further explore the speaker space and enhance recognition performance. == References == 〔
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Kernel eigenvoice」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|